#### Summary of an Offshore Inspection Campaign with Subsea CT Scanning Technology

#### Jason Harry



SSTB

DELIVERING VALUE THROUGH TECHNOLOGY

## Overview

- December 2014 offshore integrity campaign
- Corrosion assessment of ~7 year old flowline
- Increasing water cut, uncertain corrosion models
- Single well, 6" tieback targeted for extended life

- ~1,650' water depth, ~3 miles to Host

 Volumetric metal loss known, but CT imaging used to confirm wall thickness

## Motivation

- Deliver value by ensuring integrity for extended life
- Needed non-intrusive, detection under insulation, no impact to production
- Pulsed Eddy Current (PEC) in 2013
  - Results positive, but volumetric only (no w.t. data)
- Re-validate / baseline corrosion models after water breakthrough















# Subsea CT Scanning Tool

- New technology 1<sup>st</sup> of its kind
- Hess 2<sup>nd</sup> operator to use in GOM
- Non-intrusive, no impact to production
- ROV deployed
- Scan up to 27" OD with insulation (radial)
- 15 mm scan cross-section (longitudinal)
- Resolution +/- 1 mm (w.t.)





## Mobilization

- December 2014 campaign
- Hess hired Multi Service Vessel (MSV)
- CT scanning techs on board
- Deployed by crane in subsea deployment cage





#### **CT Scan Locations** \*3 Scan Locations – 4 Scans/Location

#### 1. Near PLET

 Warmest, highest corrosion potential

#### 2. Riser Base

 Most liquid accumulation

#### 3. Riser

Thicker wall pipe





# Site Prep

- Either lifting or dredging is typically required
- Elected to dredge with ROV pump
- ~1 day on each location for tool clearance
  - < 2 hours for each set of scans (4 scans/location)</p>





## **Wall Integrity Results**



Riser: < 10% loss



Riser Base: < 10% loss



PLET: 0 to 14% loss

- No evidence of accelerated internal corrosion
- Confirmed PEC data and field life extension
- Flow assurance became more of a concern





### **Flow Assurance Results**



Riser Riser Base PLET

- Confirmed annular flow regime water wet
- Unexpected internal build-up at PLET area



### **Flow Assurance Investigation**

- Build-up concentric, density 3 5 g/cc
- Flowing Conditions: 4000 psi 200°F
  - Rules out hydrate or paraffin build-up
- No asphaltene history
  - 1.2 g/cc
- No sand issues
  - 1.9 g/cc
- Medium Scaling Risk
  - 4.5 g/cc





## **Scale in Boarding Choke**







- Choke maintenance in Jan 2015 revealed a thin build up
- Build-up tested & determined to be scale, BaSO<sub>4</sub>
- Evaluated addition of scale inhibitor to chemical injection program



## **Scale Inhibitor Implementation**

- Increased coupon monitoring frequency
- Worked with chemical vendor to qualify inhibitor
- Scanning Electron Microscopy (SEM) used to evaluate particle size and growth
- SEM testing (pre-inhibitor)
  - Confirmed large particles with active growth
- SEM testing (post-inhibitor)

- Indicates much smaller particles with no active growth





# Summary

 Subsea CT scanning technology provided valuable results with no impact to production

 Obtaining value from subsea CT scanning requires thoughtful engineering / planning

– "knowing where to look" + site prep time



# Summary (con't)

 Unexpected results & subsequent actions led to quick implementation of a successful inhibition program

 New wells will add value to Hess through extended flowline use



## Acknowledgements

- Tracerco
- Nalco Champion
- Hess Integrity Management Team
- Hess Subsea Brownfield Team



### **Contact Information**

Jason Harry Hess Corporation jharry@hess.com 713-496-6806

